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Abstract

We present evidence that the aggregate capital stock of firms in oil and gas exploration

and development (E&D) as well as firms’ inventories help in explaining the dynamics of

the slope of the futures curve for crude oil. Standard structural approaches for modeling

the futures curve either highlight the role of inventory (storage models) or the rate of

extraction (production models), but both decisions are seldom modeled simultaneously.

Here we build a new equilibrium model that has both features, and in addition, models

the process of E&D capital accumulation, which can affect the cost of extraction as the

oil industry drills in increasingly expensive fields. We show how the three decisions

interact in a world of exhaustible resources. In a nutshell, a steeper futures slope not

only increases the attractiveness of carrying inventory, but also provides greater value

to accumulating E&D capital. Our model sheds light on the role of exhaustibility of

resources on the increasing trend of real oil prices and capital accumulation, and the

peaking of consumption. Its also helps understand why inventories and E&D capital each

∗I thank Hui Chen (NBER Discussant), Jaime Cassasus, Peter Christoffersen,Lars Alexander Kuehn, Bryan
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negatively predict returns on oil futures, and is thus able to shed light on the negative

relation between the slope and risk premium on oil futures.



Introduction

Recent years have seen the development of increasingly sophisticated technologies for

the extraction of natural resources from costlier fields.1 These new technologies brought to

fruition by investments by the resource extraction industry have changed the current and ex-

pected future prices of resources and have important consequences for energy self sufficiently

and stability of growth for North America. In this paper we ask if the investment in explo-

ration and development (E&D) of resources has an impact or is affected by the keenly watched

market statistics of current and future prices of the resource.

Of the most widely watched statistics in the futures market is the weak basis, which is the

discounted value of the futures price less the spot price of the resource. We work with a closely

related statistic, the relative basis, which is the weak basis divided by the current spot price of

the resource. When this quantity is positive (negative) we say the futures market is in weak

contango (backwardation). Of interest to practitioners and researchers is the economic infor-

mation that determines the relative basis. The theory of storage (Kaldor (1939) and Working

(1948)) implies that the futures relative basis is strongly positively related to inventories. We

call this the “short-run” information about resource prices in the futures relative basis. How-

ever, as we will see below, inventory data, though very useful, is unable to explain the basis in

certain periods. In addition in this paper, we argue that the futures relative basis also contains

“long-run” information about resource prices, which has important implications for decisions

such as the exploration and development of the resource extraction process. In particular, we

will develop four stylized properties of oil futures prices that arise from the long-run risks

faced by energy producers.

Stylized Fact 1: The aggregate capital stock of firms in E&D as well as firms’ inventories help

in explaining the dynamics of the slope of the futures curve for crude oil.

The top left panel of Figure 1 shows the seasonally adjusted futures basis of crude oil. As

can been seen the futures curve has mostly been in contango for the period from 2008 to 2013,

while backwardation was more frequently prevalent earlier. The bottom left and right panels

1In Alberta, Canada, new techniques have been developed to extract crude oil from bitumen using less water

and energy and damage to the environment than previously envisaged. In the United States, new hydraulic

fracturing technology has made the oil and gas trapped in previously inaccessible shale rock now economi-

cally feasible to extract.
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Table 1: What Explains the Futures Weak Relative Basis For Crude Oil (1986:7 - 2014:9)?

No. α β1 β2 R2

1 -0.933 0.850 0.284

[-7.402] [6.837]

2 -0.149 0.866 0.246

[0.0215] [4.796]

3 -0.821 0.678 0.611 0.401

[6.704] [5.459] [3.159]

We report the coefficients of the fitted monthly regression:

Relative Basis(t) = α+β1 Inventory(t−1)+β2 Capital Stock/GDP(t−1)+ǫ(t).

The weak relative basis on 1-year contracts in quarter t is [e−r(t)F (t) −
S(t)]/S(t), where F (t) is the 1-year futures prices at the beginning of each quar-

ter and S(t) is the spot price of WTI oil in Cushing, Oklahoma. Seasonal ad-

justment is done using the X-12 procedure (used by the US Department of Com-

merce). The explanatory variable “Inventory” stands for the seasonally adjusted

total US stock of crude oil and petroleum products (in billions of barrels) exclud-

ing special purpose reserves at the end of each month. The “Capital Stock” is the

sum of the “Property Plant and Equipment” variable in Compustat of firms in oil

and gas field exploration services (SIC code 1382). T-statistics are in parenthesis

and are adjusted for heteroskedasticity and autocorrelation.

show seasonally adjusted inventory and the capital stock to GDP ratios, respectively. While

inventory has been higher in recent years as well relative to the earlier part of the sample, the

growth of the capital stock of firms in E&D firms has been far more spectacular. The ratio of

capital stock to GDP was quite stable in our sample from 1986 to around 2001, but has grown

very rapidly since then. This has been the period of rapid development of the shale oil plays

in the US.

Table 1 reports simple linear regressions at a monthly frequency of the futures relative

basis on inventory and the capital stock of E&D firms as a share of U.S. GDP (see the data

appendix for sources of data).2 As can be seen, while one quarter lagged inventory explains

about 28 percent of the variation in the basis, the lagged capital to GDP ratio explains about

2Throughout this paper we look at the statistics of the one-year futures relative basis. While it would be of

interest to study longer maturity futures, we are constrained by the lack of long historical times series on

these longer term contracts. Two-year contracts started trading actively in mid 1990 and four-year contracts

only in 1997. The correlations of the relative basis of the two-year and four-year contracts with the one-year

contract are 99.7 and 98.7 over the subsamples, respectively.
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25% of the variation in the relative basis (lines 1 and 2). Both variables have positive beta

coefficients. When both variables are considered, we explain about 40% of the variation in the

relative basis, and each variable remains significant. This suggests that both short and long run

decision by firms are important determinants of the futures relative basis. The periods when

the discounted futures price is higher than the spot price, inventory accumulates. In addition,

firms raise more capital for E&D expenses in response perhaps to higher futures prices.

Table 2: Risk Premium on Crude Oil Futures at Alternative Horizons (1986:7 - 2014:9)

h α β1 β2 R2

1 0.101 -0.073 -1.113 0.024

[0.900] [-0.509] [-1.758]

3 0.231 -0.155 -0.322 0.037

[0.821] [-0.454] [-1.472]

12 -0.501 0.795 -1.688 0.065

[0.579] [0.941 [-2.336]

We report the coefficients of the fitted monthly regression:

h
∑

i=0

return(t−1+i) = α+β1 Inventory(t−2)+β2 Capital Stock/GDP(t−2)+ǫ(t),

for h = 1, 3, and 12 months. return(t) is the return on purchasing a 2-month

maturity futures contract at the beginning of the month t − 1 and closing it at

the spot price, which is the 1-month maturity futures contract at t. The explana-

tory variable “Inventory” stands for the total US stock of crude oil and petroleum

products (in billions of barrels) excluding special purpose reserves at the end of

the month The “Capital Stock” is the sum of the “Property Plant and Equipment”

variable in Compustat of firms in oil and gas field exploration services (SIC code

1382). T-statistics are in parenthesis and are adjusted for heteroskedasticity and

autocorrelation.

Stylized Fact 2: The risk premium on crude oil futures is negatively related to both inventory

and capital of E&D firms.

As seen in Table 2, the two variables explain 2.4 percent of the excess return variation at

a monthly frequency, with each variable having negative coefficients. At longer horizons of 3

months and 12 month rolling returns (holding a sequence of 2-month contracts for 1 month)

are predicted with R2 of 3.7 percent and 6.5 percent, respectively.
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Stylized Fact 3: As seen in the top panel of Figure 2, the aggregate consumption of petroleum

products trended upwards from 1986 to 2007, but has fallen off since then. The bottom panel

shows that the real spot price of oil has trended up around some fluctuations in the entire

sample from 1986 to 2014. Therefore, despite increasing capital expenditures and inventories,

consumption appears to have at least a local peak amid rising prices.

Stylized Fact 4: It is natural to think of long-run risk as pertaining to events that happen less

frequently. The left panel of Figure 3 shows the variance frequency decomposition of the real

spot price of oil. As seen in the figure, there is a large amount of variance of the weak relative

basis that is of low frequency movements (every 6 years or less often). There is also a large

proportion of high frequency movements (every 2 months or more often). Overall, the fre-

quency decomposition is U-shaped, with these two extreme frequency movements explaining

more of the variation in the relative basis than intermediate frequency movements. This is

to be contrasted with the analogous decomposition for most macroeconomic series such as

industrial production, which show a spike at a frequency such as 2.5 years (see e.g. Figure 6.5

in Hamilton (1994)). The lack of such a frequency suggests that the commodity pricing cycle

is distinct from the business cycle, but we will examine this more in detail in this paper.

In this paper, we build a model of the long run decision making of resource producing

firms that in equilibrium will lead to firms’ decisions and spot and futures prices having these

stylized properties. We model demand shocks that drive the business cycle fluctuations in

oil prices, but also build in the implications of the exhaustibility of the total resource base,

and firms’ decisions on capital accumulation that manage their extraction costs as they extract

from increasingly costly fields. In addition, firms’ choose inventories to smooth fluctuations

in demand and extraction.

We start with a 2-period version of the model for which we can provide closed form ex-

pressions for the value of extraction options and can characterize the optimal investment and

inventory policy quite tractably. The closed-form expressions for the futures basis and risk

premium show explicitly the role of the real decisions variables in determining these vari-

ables. With comparative static exercises we show how the relationship between the decision

and financial variables varies with the level of the capital stock. In particular, we highlight

the aggressiveness of extraction decisions and inventory choices and their role in affecting the
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financial variables. The comparative static results are at least qualitatively similar to the first

two stylized facts.

To study the dynamics of these variables and their relationship to the data, we next build

an infinite horizon model. In dynamic models with inventory restricted to be positive, it is not

possible to obtain closed-forms as has been pointed out by several authors. So, we solve the

model using projection methods as has been popularized by the work of Judd (1999). Simu-

lations of the model show that both inventory and capital accumulation impact the basis and

the risk premium with the same signs as in the data. The model also shows that even though

consumption peaks, and real prices of the resource trend upwards, the cycles of inventory and

capital accumulation are quite stable, as increasingly costlier resources are extracted. While

the resource is not completely exhausted even after more than a hundred years, consumption

drops significantly after about half the resource base is exhausted, while capital fluctuates with

the demand cycle. Therefore, the first two stylized facts are consistent with a model of near

exhaustion of the resource or the peak consumption view. The model also generates a fre-

quency decomposition of spot prices similar to that in the data. The model R2 for the basis is

not as high as in the data, and it is slightly higher than the data in explaining the risk premium.

Our model contributes to the literature on resource extraction and storage. Most existing

models have either one of these features. Models of storage assume exogenous extraction

decisions (e.g. Deaton and Laroque (1992) and Routledge, Seppi, and Spatt (2000)). Start-

ing with the seminal work of Hotelling (1931), models of exhaustible resource extraction on

the other hand, allow no storage (e.g. Pindyck (1980), Litzenberger and Rabinowitz (1995),

Carlson, Khokher, and Titman (2007) and Kogan, Livdan, and Yaron (2009)). The same is

true of models that allow production of commodities (see e.g. Casassus, Collin-Dufresne, and

Routledge (2008)). In the context of agricultural commodities, there is an older literature that

has production and storage in equilibrium, but the analysis in such models does not apply to

exhaustible resources, where equilibrium profits are compatible with competitive equilibrium

due to limitations in supply (e.g Scheinkman and Schechtman (1983)). With exhaustible re-

sources, as pointed out in Litzenberger and Rabinowitz (1995), there are profits at the time

of extraction that are optimized by the extraction timing decision of resource firms, a feature

that we model explicitly. The model sheds light on the negative relation between the futures
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basis and the risk premium as has been pointed out by several authors (e.g. Fama and French

(1987), Gorton and Rouwenhourst (2006), Erb and Harvey (2006), and Baker and Routledge

(2012)).

The paper structure is as follows. In Section 1, we formulate the 2-period model of optimal

resource extraction and the relative basis, and study its comparative statics. In Section 3,

we extend our analysis to the infinite horizon model and study the dynamic properties of the

model using simulations. Section 4 concludes. Three appendices contain the data description

and sources, some analytically results, and the numerical procedure for solving the infinite

horizon model, respectively.

1 A Simple Two Period Model of Resource Extraction and

Exploration Activity

We build on the two period version of the model of LR, with several generalizations. The most

significant addition is of an E&D (investment) decision that reduces costs of future extraction

of the resources. To tractably analyze the investment decision with technology spillover, we

introduce multi-plant firms. Assume a continuum of price taking identical resource production

multi-plant firms, each of which owns an equal share of reserves. We will focus our analysis

on the representative firm.

We start with a description of the demand side of the model. The demand function for

the resource at time t is given by simple function qt = f(St, ǫt), where ǫt is a demand shock

realization for the resource at date t. Without loss of generality, we set ǫ0 = 0, and ǫ1 = ǫ.

Conditional on a realization of ǫ, the inverse demand function is s = f−1(qt; ǫt).

Supply of the resource is optimally determined by the firm. The resource can be extracted

from wells of varying quality, which is parsimoniously captured by a variable x. Wells x are

uniformly distributed x ∈ [0, x̄] in period 0. Well x is operated by plant x owned by the firm

and has access to technology with extraction cost in period 0 of x g(K0), where K0 is the

amount of capital in the industry (to be discussed below). Let R0 be the reserves available

at date 0. At date 0, the plant level decisions determine the cutoff reserve quality (extensive

margin), xe
0.
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As discussed in the introduction, there are interesting relationships between the slope of

the futures curve, real decisions, and expected returns on futures strategies. To address these,

our model must build in the price of risk in energy commodities. Following a long literature

in asset pricing, we specify an exogenous pricing kernel with a constant price of risk of the

form:

M1 = M0 · exp(−r − σM ǫ). (1)

To keep things simple, we have specified that the kernel depends on the shock to energy

consumption, so that marginal utility is high in periods of low energy demand. While oil and

total consumption are not perfectly correlated in real data, we could generalize this assumption

with an increase in computational complexity by having a second not perfectly correlated

shock to the kernel. Using the kernel, we can compute all expectations under the risk-neutral

measure, which we will denote as EQ[·].

We assume that all investments in technology are made at the firm level, and affects extrac-

tion costs for resources of all grades. In particular, extraction cost for well x at time t is given

by x g(Kt), where Kt is the amount of capital in E&D. The timing of capital installation is as

follows: At date 0, the firm inherits capital of K0 from past decisions. The firm can augment

this capital stock by incurring E&D expenses, which we call investing. The new capital will

follow the standard process

K1 = (1− δ)K0 + I0. (2)

The investment choice is made before before any extraction decisions are made. Conditional

on the investment choice at the firm level, each plant chooses its extraction decision to max-

imize the profits of the plant. Conditional on the firm level investment, the plant level maxi-

mization can be written as:

πx
0 = max

0≤Qx
0
≤

R0
x̄

S0 Q
x
0 −Qx

0 x g(K0) + e−rEQ[(S1 − x g(K1))
+] (

R0

x̄
−Qx

0). (3)

In particular, for a firm with positive and interior production

S0 − x g(K0) = C(x g(K1)), (4)
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where C(x g(K1)) is the value of a 1-period call option with exercise price of x g(K1). The

left-hand side is the net gain to current extraction, while the right-hand side is the value of

delaying extraction. It is useful to note at this point that the call option valuation in (4) is quite

similar to a regular American option, with the only difference being that the price at each date

of the resource is determined by the aggregate optimal extraction decision of all producers

using the inverse demand function. The Kuhn-Tucker optimality condition at the boundaries

for the extraction choice of plant x satisfy

[S0 − x g(K0)− C(x g(K1))] Q
x
0 = 0 or [S0 − x g(K0)− C(x g(K1))] (

R0

x̄
− Qx

0) = 0.

(5)

We complete the analysis of the model by determining the investment choice at date 0 in the

context of the model without and with storage in the following subsections.

1.1 Model Without Storage

We now show how the cutoff resource quality (the extensive margin is determined) xe
0. At

date 1 since there are no further options and no inventory, all plants with available resource

and extraction costs smaller than the price (x g(K1) < S1) will extract. Given installed capital

of K1, therefore, aggregate production at date 1 will be

Q1(x
e, ǫ) =

(

∫ S1/g(K1)

xe
0

1

x̄
dx

)

R0 =
S1/g(K1) − xe

0

x̄
R0. (6)

Hence, the date 1 price is S̃1 = s(Q1(x
e, ǫ); ǫ). Let C(x|xe

0, K0, I0) be the value of the extrac-

tion call option for the firm when the extensive margin is xe
0, K0 is capital at date 0, and I0 is

investment of at date 0. Then xe
0 satisfies the fixed-point condition:

S0(x
e
0)− xe

0g(K0) = C(xe
0 g(K1)|x

e
0, K0, I0), (7)
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when it lies in the interior of the interval [0, x̄], and with the boundary conditions:

xe
0(K0, I0) = 0 if s(0) g(K0) < C(0|0, K0, I0), (8)

= x̄ if s(x̄) g(K0)− x̄ > C(x̄|x̄, K0, I0). (9)

The firm maximizes total profit at date 0

π0 = max
I0>0

EQ

[
∫ x̄

0

πx
0dx− P0 I0

]

(10)

= max
I0>0

[

S0
xe
0

x̄
−

(xe
0)

2

x̄
g(K0)

]

R0 +

(

∫ x̄

xe
0

C(x g(K1)|x
e
0, K0, I0) dx

)

R0

x̄
− P0 I0

where P0 is the price of capital at date 0 in consumption goods at that date. To compute

expected profit we calculate the maximal investment choice numerically by choosing over a

grid of values.

We now make specific assumptions on the demand function and the distribution of shocks

that enable us to solve for the firm value in closed form. Specifically, we assume a linear

demand function in each period of the form: q0 = a− b S0, and q1 = a · em+σ ǫ − b S1, where

the demand shock ǫ is distributed N(0, 1). The assumption implies resource expected demand

growth at the rate µ. Now using the demand function at date 1, equilibrium entails that:

1

x̄
(S1/g(K1)− xe

0) R0 = a eµ+σ ǫ − b S1.

Solving for S1 we have

S1 =
a eµ+σǫ +

xe
0

x̄
R0

b+ R0

x̄ g(K1)

. (11)

In addition, we have

S0 = 1/b

(

a−
xe
0

x̄
R0

)

. (12)

Since the resource prices at each date are dependent on the extraction choices of firms,

which in turn depends on capital inherited at date 0, and their investment choice, we first

formulate the value of the extraction option conditional on both these variables.
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Proposition 1 The value of the extraction call option at date 0, given installed capital K0,

investment I0, and cut-off resource quality xe
0 ∈ [0, x̄] for plant x is

C(x g(K1)|x
e
0, K0, I0) =

a e−r

D

[

e(µ−σM σ+0.5σ2)N(−d1)− kN(−d2)
]

,

d1 =
log(k)− µ+ σM σ − σ2

σ
; d2 =

log(k)− µ+ σM σ

σ
;

k =
1

a

(

Dxg(K1)−
xe
0

x̄
R0

)

;

D = b+
R0

x̄ g(K1)
.

The value of a put option is

P (x|xe, K1) =
a e−r

D

[

k N(d2)− e(µ−σM σ+0.5σ2)N(d1)
]

.

The proof is in the appendix.

Using the stock price in (11) implies that the forward price for the linear demand case

satisfies:

F0 = EQ[s(Q1; ǫ)] =
a eµ−σM σ+0.5σ2

+
xe
0

x̄
R0

b+ R0

x̄ g(K1)

. (13)

What does this simple two-period model imply about the relationship between investment

and futures basis? It is hard to sign this relationship in general, we can for given extraction

xe
0 decisions. In this case, as seen above, the futures price is increasing in extraction costs,

while the spot price, conditional on xe
0 does not depend on it. Therefore, the futures basis is

increasing in g(K1). An increase in the extraction costs implies a lower expected supply in the

future, so that prices will be higher in the future, Under the assumption that g′(K1) < 0, we

will have a negative relationship between capital and the futures basis, which is counterfactual.

However, if xe
0 is higher in periods of high capital, which is reasonable, since the firm is likely

to be more aggressive with its extraction policy in periods of low future extraction costs, the

relationship can well turn positive. We will look at this relationship further in Section 1.3

below.
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1.2 Model With Storage

As mentioned in the introduction, existing models of resource extraction do not allow for

storage, while models with inventory do not have optimal resource extraction. In addition,

none of these models have exploration activity. Here we provide the analysis of a model with

production, storage and exploration. The model will help us address the stylized facts noted in

the introduction on the positive comovement of exploration activity, extraction, and inventory

accumulation.

We continue to formulate the decisions of the multi-plant firm in the subsection 1.1 as-

suming once again that E&D investment decisions are made before extraction and inventory

decisions. We assume that investment and inventory decisions are made at the firm level,

while extraction decisions are made at the plant level. Essentially, in the model with storage,

the firm has two substitutable ways of providing resource to customers at date 1: it can either

defer date 0 extraction and extract in date 1, or it can extract in date 0, and carry inventory

to date 1. Which strategy is more profitable? Each has its own advantages, and the tradeoff

is to a large part determined by storage costs and the expected change in extraction costs. If

the latter are expected to increase rapidly, for example, it might be worthwhile for the firm to

extract in date 0 and carry inventory. In addition, the price protection offered by holding the

resource in the ground (as in the case of no storage) implies that an increase in uncertainty

will make the delayed extraction choice more profitable.

The plant level optimization is very similar to the case without storage, albeit with different

equilibrium resource prices. The objective function of the plant still satisfies (3) and its optimal

extraction policy is determined as in (4). Given this, the profit at the firm level is

π0 = max
I0>0

max
xe
0
∈ [0,x̄]

max
Z1∈[0,

xe
0
x̄

R0+Z0]

S0

[

xe
0

x̄
R0 + Z0 − Z1

]

− 0.5
(xe

0)
2

x̄
g(K0)R0 − P0 I0

+ EQ
[

e−(r+u) S̃1 Z1

]

+

(

∫ x̄

xe
0

C(x g(K1)|Y0) dx

)

R0

x̄
, (14)

where Y0 denotes the vector of state variables: Y0 = (xe
0, K0, I0, Z0, Z1). Conditional on

extraction, investment, and storage policy, the optimality conditions for the extraction policy

are similar to the case without storage, but now building in the impact of storage on prices at
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both dates:

S0 − xe
0 g(K0) = C(xe

0 e
g(K1)|Y0), if 0 < xe

0 < x̄, (15)

xe
0 = 0 if s(0) g(K0) < C(0|Y0), (16)

xe
0 = x̄ if s(x̄) g(K0)− x̄ > C(x̄|Y0), (17)

where for parsimony we have written the date 0 price s(xe
0), only as a function of the choice

of the extensive margin xe
0, even though it depends on the entire vector Y0.

We can similarly formulate the firm’s optimal storage policy conditional on the investment

and extraction decisions. Given our assumption on the inverse demand function we can write

the price at date 1 as

S̃1 = s(Q1 + Z1 e
−u; ǫ̃). (18)

Continuing to assume that the firm is a price taker, the first order condition with respect to

inventory, Z1 is

−S0 + e−(r+u)EQ[S1] = 0 if 0 < Z1 <
xe

x̄
R0 + Z0, (19)

< 0 if Z1 = 0, (20)

> 0 if Z1 =
xe

x̄
R0 + Z0. (21)

The interior case in (19) determines the regular textbook equation for the value of a forward

contract, while (20) occurs in “stockouts”, when all available resource is consumed, and hence

no inventory is carried. Finally, (21) occurs in periods when nothing in consumed at date 0,

and all produced resource is stored for future consumption. We will discuss explicitly below

how Z0 and xe
0 are determined. The investment policy is maximized numerically over a grid

of values similar to the case without storage.

Specializing again to the linear demand case: q0 = a − b S0, and q1 = a · em+σ ǫ − b S1,

enables us to solve for resource prices and extraction options in closed form. Equilibrium at

date 1 now requires:

1

x̄
(S1/g(K1)− xe

0) R0 + Z1 e
−u = a eµ+σ ǫ − b S1.
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Solving for prices, we now have

S0 = 1/b

(

a+ Z1 − Z0 −
xe
0

x̄
R0

)

, (22)

S1 =
a eµ+σ ǫ +

xe
0

x̄
R0 − Z1 e

−u

b+ R0

x̄ g(K1)

. (23)

Similar to Proposition 1 we solve for the extraction option value in closed form conditional on

all firm level decisions.

Proposition 2 The value of the extraction call option at date 0 in the presence of a storage

technology with proportional storage costs of u, given installed capital K1, cut-off resource

quality xe
0 ∈ [0, x̄] and resource storage amount of Z1 for a resource with current extraction

cost of x is

C(x g(K1)|Y0) =
a e−r

D

[

e(µ−σM σ+0.5σ2)N(−ds1)− kN(−ds2)
]

,

ds1 =
log(ks)−m− σM σ − σ2

σ
; ds2 =

log(ks)−m− σM σ

σ
;

ks =
1

a

(

Dxg(K1)−
xe
0

x̄
R0 + Z1 e

−u

)

;

Ds = b+
R0

x̄ g(K1)
.

The value of a put option is

P (x|Y0) =
a e−r

Ds

[

ks N(ds2)− e(µ−σM σ+0.5σ2)N(ds1)
]

.

The proof is similar to that of Proposition 1.

Using the stock price in (23) implies that the forward price for the linear demand case

satisfies:

F0 = EQ[s(Q1; ǫ)] =
a eµ−σM σ+0.5σ2

+
xe
0

x̄
R0 − Z1 e

−u

b+ R0

x̄ g(K1)

. (24)

The partial relation between investment and the futures basis is essentially the same as for

the case without storage. In addition, higher inventories, ceteris paribus, imply lower futures

prices due to an in increase in supply in period 1.
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Combing the futures and expected spot price we have:

E[ST ]− F0

F0

=
a eµ+0.5σ2

− eµ−σm σ+0.5σ2

a eµ−σm σ+0.5σ2 +
xe
0

x̄
R0 − Z1 e−u

(25)

which is the expected return from the long futures position. This quantity is often called the

“risk premium” (see e.g. Gorton and Rouwenhourst (2006)). Keynes observed that speculators

mostly take the short side of futures contracts and therefore require a risk premium for holding

the commodity risk. Therefore, the futures price that the producers (hedgers) would sell at

should be lower than the expected spot price that they could obtain by holding the commodity

and selling in the future. However, here we notice that the risk premium for the commodity

is not only the standard −σM σ, but also depends on the firm’s investment policy through its

effect on the firm’s production and inventories, each of which is endogenous and related to the

firm’s investment policy.

We now provide a description on how the extensive margin and inventories are jointly

determined in the storage version of the model. For a given choice of the extensive margin x,

we use (19) - (21) and (22) - (23) to determine inventory as

Z1(x
e
0) =

er+u(−a+ xe

x̄
R0 + Z0)(b g(K1)x̄+R0) + b g(K1)x̄(a e

µ−σM σ+0.5σ2

+
xe
0

x̄
R0)

er+u(b g(K1)x̄+R0) + e−u b g(K1)x̄

= 0 if s(xe
0|Z1 = 0) > e−(r+u)F (xe

0|Z1 = 0)

=
x

x̄
R0 if s(xe

0|Z1 =
xe
0

x̄
R0 + Z0) < e−(r+u)F (xe

0|Z1 =
xe
0

x̄
R0 + Z0),

for interior, and boundary choices, respectively. In particular, optimal inventory for the interior

case is the solution to the equation s(xe
0) = e−(r+u)F (xe

0). We then use this optimal inventory

function in the first order conditions for the extensive margin in (15) – (17).

One immediate implication of introducing storage possibilities into the model is that it

makes the futures basis less variable. In particular, whenever an interior level of inventories

is chosen, we have by construction that S0 = e−(r+u) F , so that the futures relative basis

identically equals (e−rF − S0)/S0 = eu − 1. Departures from this constant slope therefore

occur only when inventory is constrained, either from becoming negative or from it exceeding
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the sum of incoming inventory and current output. In the former case, S0 > e−(r+u) F leading

to a backwardated futures curve, while the latter case leads to a futures curve in contango.

1.3 Comparative Statics of Optimal Firm’s Decisions, Futures Basis, and

the Risk Premium with Respect to Mean Demand Shocks

As discussed above, it is hard to analytically determine the relation between the optimal firm’s

decisions and asset prices since the extensive margin is endogenous and affects prices. We

consider the comparative statics for a specific numerical example in Figure 4 with respect to

alternative levels of the mean of demand shocks, m. In particular, in this figure, we examine

the extensive margin, investment, inventory, weak relative basis, and the risk premium for

three levels of the period 0 capital stock. All optimal decisions are calculated for the model

with storage in Section 1.2.

As seen in the first row, for each level of the capital stock, the extensive margin is flat or

declines with higher demand shocks, as the resource is provided to consumers in periods when

their demand is higher. In periods of high capital, there is greatest date 0 consumption, as the

higher capital enables the firm to extract costlier resources at date 1. The results for investment

in the second row are quite interesting since there are two effects: first, higher demand shocks

lead to higher investment from a substitution effect, but higher demand shocks also imply that

higher extraction costs (from low future capital) will still lead to profitable extraction leading

to lower investment. Overall, the relation between investment and demand is negative for

medium levels of capital, but positive for low and high levels.

The third row shows the optimal inventory decision. During periods of high capital, as

seen, inventory is the highest for high levels of capital stock, because the firm takes the most

aggressive consumption decision at such times, extracting the costliest resources and must

have inventories for future consumption in case of adverse shocks, specially for low mean

demand. Overall, for both medium and high levels of capital, the relation between inventory

and mean demand is negative.

The fourth row shows that the relation between mean demand and the basis is quite different

for alternative levels of capital. For low capital levels, the basis is increasing, while for high
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capital it is decreasing. For high capital level, investment increases in mean demands, lowers

future extraction costs leading to greater supply and lower futures prices. Conversely, for low

capital, lack of future extraction implies higher future prices. For medium levels, it has a

nonmonotonic relation, negative for low demand levels, and positive for high demand levels

arising from the combination of the two effects. Finally, the fifth row, shows that the risk

premium is lower for higher levels of capital stock due to the greater expected resources in the

second period. In addition, the risk premium is higher for higher demand levels for each level

of the capital stocks.

Thus, the relationships between investment and the financial variables are quite complex,

and can change sign for different levels of the capital stock. For example, the relation between

investment and the risk premium is negative for medium levels of the capital stock, and pos-

itive for high levels. The relationships between the capital stock and the financial variables

are more stable, with a higher basis and lower risk premium for a higher capital stock. These

relations have the same sign as what we observe empirically in the introduction. Still, these

results are only comparative statics. In the next section, we will see if they hold dynamically

in simulations of an infinite horizon model.

2 The Infinite Horizon Model with Production, Exploration,

and Storage

We preserve much of the structure of the 2-period model. The one additional assumption that

we make here is that there are adjustment costs to investment, an assumption that is standard

in the investment literature to reduce the volatility of the investment process (see e.g. Kogan,

Livdan, and Yaron (2009) in the context of a production model for commodities). This will

help us provide a more empirically realistic model relationship between investment and the

futures basis.

The demand function for the resource at time t is once again given by qt = f(St, ǫt), where

ǫt is a demand shock realization for the resource at date t. Conditional on a realization of ǫt,

the inverse demand function is s = f−1(qt; ǫt). In addition, we assume the same form for the

pricing kernel as for the 2-period model as specified in (1). We assume that the demand shock
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follows a mean-reverting Ornstein-Uhlenbeck (OU) process:

ǫt+1 − ǫt = −kǫ ǫt + σǫ (1 + |ǫt|) et, (26)

where et ∼ N(0, 1). The use of mean-reverting demand shocks is standard in the commodity

pricing literature (e.g. Carlson, Khokher, and Titman (2007) and Pirrong (2012)). The process

exhibits time varying volatility, which has a V-shaped relation with the demand shock. There-

fore, volatility is high when demand is extremely low or extremely high. This feature captures

the essence of time varying uncertainty of fundamentals that is now standard in macroeco-

nomics and finance (see e.g. Bansal and Yaron (2004) and Bloom (2009)). We model this

feature to potentially generate a time varying risk premium of the resource.

Let xe
t be the extensive margin at the start of time t. The plant level decisions determine the

increase in the extensive margin, it, so that xe
t+1 = xe

t + it. Then at date t, the total production

equals

Qt = R0 ·

∫ xe
t+it

xe
t

1

x̄
dx = R0

it
x̄
. (27)

The total extraction costs incurred by the firm at date t are

Ct = g(Kt) ·R0 ·

∫ it+xe
t

xe
t

x

x̄
dx =

1

2
g(Kt)R0

(xe
t + it)

2 − (xe
t )

2

x̄
. (28)

It is useful to note that extraction costs are not simply proportional to i2t , but instead are

proportional to i2t + 2xt it. This is because an increase in the extensive margin leads to higher

resource extraction costs as lower quality wells are accessed. An interesting implication is

that the industry will have to maintain a higher level of capital stock over time to maintain a

constant level of extraction costs.

We assume that the firm also has a costly storage technology. It is able to place a non-

negative quantity Zt in storage at time t. Storage costs are a proportion u of the quantity stored

so an amount Zt placed in storage at t, will make available an amount Zt+1 = Zt (1 − u) at

t + 1. The firm behaves competitively in production markets, and we assume here that its

storage decision has no price impact either. We will extend the analysis for the case of a

non-negligible storage decision in future versions of the paper. For the competitive case,
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we alternatively could assume that inventory decisions are made by a risk neutral speculator.

However, with complete markets, the equilibrium will be identical with storage by either the

firm or speculators. Combining production as in (27) and inventory, the total amount available

for consumption in period t is

qt = Qt + Zt − Zt+1. (29)

If there is a stockout, then Zt+1 = 0, that is, all available resource is consumed in period t.

To solve for equilibrium prices and quantities, we solve the related problem of a social

planner who maximizes the discounted expected consumer plus producer surplus (see e.g.

Weinstein and Zeckhauser (1975) and Carlson, Khokher, and Titman (2007)). The social

surplus at time t is therefore,

SSt =

∫ qt

0

s(q; ǫt)dq − Ct − Pt It, (30)

=

∫
it
x̄
R0+Zt−Zt+1

0

s(q; ǫt)dq −
1

2
g(Kt)R0

(x2
t + it)

2 − (xe
t )

2

x̄
− Pt It, (31)

where total production, costs of production, and consumption, are given in (27), (28), and

(29), respectively, and Pt is the price of capital goods in units of consumption goods at date t.

We hold Pt = 1 for all t.

The social planning problem can be solved by standard dynamic programming methods.

The Hamilton-Jacobi-Bellman equation is

J(xe
t , Zt, Kt, ǫt) =

max
it∈[0,x̄−xe

t ], Zt+1∈[0,
i
x̄
R0+Zt], 0≤It≤Ī(Kt)

SSt + e−rEQ[J(xe
t + it, e

−uZt+1, e
−δKt + It, ǫt+1)]. (32)

Note that we have placed an upper bound on investment, potentially as a function of the

capital stock, to capture the essence of adjustment costs. To economize on notation below,

we will suppress the arguments of the J function and write Jt = J(xe
t , Zt, Kt, ǫt) and Jt+1 =

J(xe
t + it, e

−uZt+1, e
−δKt + It, ǫt+1).
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The first order conditions for this problem are:

R0 (s(qt ǫt)− (xe
t + it) g(Kt))

x̄
+ e−rEQ[Jx,t+1] ≤ 0;= 0 if it > 0 (33)

R0 (s(qt ǫt)− (xe
t + it) g(Kt))

x̄
+ e−rEQ[Jx,t+1] ≥ 0 if it = x̄− xe

t (34)

−s(qt; ǫt) + e−(r+u)EQ[JZ,t+1] ≤ 0;= 0 if Zt+1 > 0, (35)

−PI + e−rEQ[JK,t+1] ≤ 0;= 0 if 0 < It < Ī(Kt), (36)

−PI + e−rEQ[JK,t+1] ≥ 0 if It = Ī(Kt), (37)

It is worth noting that the optimality of the extensive margin and investment must be checked

at both lower and upper boundaries. However, we only write the optimality condition for

inventory at the lower boundary (zero). The optimality condition for inventory at the upper

boundary (sum of production output and inventory carried over) will never be chosen if there

is an Inada condition on the inverse demand function.

The first order conditions can be written as functions of the partial derivatives of the value

function at date t rather than date t + 1 by use of the envelope theorem. For the extensive

margin, it implies that

Jx,t =
∂

∂xt

SSt + e−rEQ[Jx,t+1] = −g(Kt)
it
x̄
R0 + e−rEQ[Jx,t+1]. (38)

For incoming inventory, we simply have

JZ,t =
∂

∂Zt

SSt = s(qt, ǫt), (39)

which implies that EQ[JZ,t+1] = EQ[s(qt+1, ǫt+1)]. Finally for the capital stock,

JK,t = −
1

2
g′(Kt)R0

(xe
t + it)

2 − (xe
t )

2

x̄
+ e−(r+δ)EQ[JK,t+1]. (40)

We solve the HJB equation using projection methods as described in Judd (1999). Using

the policy functions written in polynomial form, we can calculate expected future production

in each state, and hence using the inverse demand function and the Markovian shocks, we can

compute the forward prices as the expected value of the future spot price under the risk-neutral
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measure. We note that all expecations are calculated using Gaussian Quadrature. Details of

the approximation method are provided in Appendix 2.

3 Explaining the Stylized Facts

In this section we provide simulation results from the infinite horizon model in Section 2. Be-

fore doing so, we need to specify choices made on the demand function and the cost function

in the model. We use an inverse demand function of the form: s(qt, ǫt) = eb+ǫt/qαt , where

0 < α < 1 and ǫt follows the O-U process in (26). Such a demand function is standard in

commodity pricing papers (see e.g. Carlson, Khokher, and Titman (2007) and Kogan, Livdan,

and Yaron (2009)). The extraction cost function that we use is of the form g(K) = γ
Kp , where

p > 0. This implies that extraction costs decline as capital accumulates, but explode as capital

tends to zero, so that positive capital is required to ensure the supply of the resource.

We next discuss a set or results for some parameter values assumed for the model.

3.1 Parameter Values for Model

For the current version of the paper we choose the demand function parameter α = 0.5, and

b = .1. The latter parameter only governs the average level of demand. An α < 1 is required

for consumer surplus to be finite, but we have no other restrictions on the choice this parameter.

In future versions we will consider how alternative levels of α will affect the crucial statistics

that we study. For the cost function parameter we choose p = 1 and γ = 0.1. This cost

function is novel to the literature, and we are still investigating other parameter choices. We

set the rate of capital depreciation at 10 percent a year, a standard rate assumed in the real

business cycle literature. We set proportional storage costs of 5 percent a year, similar to that

in Routledge, Seppi, and Spatt (2000) and Pirrong (2012).

The parameters for the demand shock process in (26) that we use are kǫ = −0.3, and

σǫ = 0.2. The drift parameter governing the speed of mean reversion is the same as that in

Carlson, Khokher, and Titman (2007), while we choose a lower volatility, since we scale up

the volatility by the amount (1 + |ǫt|).
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We assume that the price of risk is σm = 0.3. This is around the standard level used in

asset pricing models to justify an aggregate Sharpe ratio of 30 percent on stocks, close to its

historical average. Finally, we assume that the price of capital is constant and set equal to

one. Essentially this means that the numeraire good can either be consumed or converted for

investment one-for-one. In addition, assuming a constant price of capital implies that none of

the investment dynamics in the model arise from it.

We also make some choices on the scale of the problem. We assume that x̄ = 50, and the

total reserves of the resource, R = 10. These we believe do not affect the results of the paper.

3.2 Results from a Single Simulation

As we will highlight in this section, this model displays capital cycles that helps explain the

variation in the relative basis and the other stylized facts. We start by showing a typical

sample path of the model’s real and financial variables in Figure 5. Even though we simulate

the model for 125 years, we only show the simulated variables until 90 percent of the resource

is exhausted. In the displayed simulation, this occurs after about 70 years.

The top left panel shows that simulated demand shock process, which fluctuates around 0.

The demand process exhibits some persistent booms and busts. For example between years

25 and 35 demand remained quite strong. It was strong and weak for some shorter episodes

as well. The top middle panel shows how the extensive margin expands over time. One

noteworthy feature is that the speed of extraction slows after xe crosses 35 (about 70 percent

of total reserves). The top right panel shows the optimal consumption of the resource. In the

simulation shown, consumption peaks at the time of the first demand spike at about 15 years,

and the time of the second major boom from years 25-35, it was only about half the peak

value. Subsequently, in years 35 and beyond, consumption is positive, but only rises above a

very low level in periods of spiking demand. Therefore, the model appears to support the peak

consumption view.

The middle panels show the real decisions made by the firm. The left panel shows the

capital accumulation process. This process is strongly (61 percent) correlated with the demand

shock process, but has one additional feature. It spikes up faster than it can decline. The

spiking up happens due to spikes in investments in periods of strong demand shown in the
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middle panel. However, once capital is in place, it can only decline at the pace of depreciation

when demand falls off. Given this constraint, the firm optimally invests zero in periods of

low demand, and rapidly increases investment once growth resumes. In future versions of the

paper, we will impose tighter constraints on investment so that it might follow a less volatile

process.

The middle right process shows the inventory process chosen by the firm. As seen, inven-

tory is positive frequently, specially after year 35, which we noted was the time after which

extraction slowed. Even prior to this year, production (related to changes in the extensive

margin) stops in periods of low demand and inventory is used to sustain consumption in such

periods. After year 35, production remains mostly off (about 2/3 of the years) and inventory

has a fairly mechanical cycle only disturbed by extremely high demand. Still, the ability to

accumulate inventory is critical to maintaining a small level of consumption for a long period

of time. We only display until year 70 of the simulation, but it continues at this small level

until year 125 (which we simulated) and beyond. Despite the difference in production and

investment before and after year 35 and the drop off in consumption, the capital and invest-

ment process actually look quite similar. In our model, resources get increasingly costly to

extract as the extensive margin expands, requiring increasing amounts of capital for the same

level of consumption. Therefore, we still see a cyclical variation in the capital stock similar

to earlier part of the simulation. However, the ratio of capital and inventory to consumption

trend upwards over time after significant depletion of the resource.

The bottom left panel shows how the spot price of oil looks over time in the model. As

seen, the price trends up with occasional fluctuations until year 50, and then drops off a bit

and still fluctuates with demand shocks. Comparing this series with consumption (top right

panel) we see that the trend in the price is related to the decline in consumption, although the

correlation is far from perfect. Indeed prices are also affected by the capital accumulation and

inventory processes which are the supply responses of firms to demand shocks and depletion

rates.

The middle panel shows the weak relative basis and its fitted value based simply on a linear

regression on the capital process. As seen, the two series are indeed positively related, with an

R2 of about 12 percent. We recall from Table 1 that in the data the R2 was about twice as high,
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however, a large part of our data sample has a single episode of a large increase in the capital

stock, and the relationship is not as strong in other periods. Why does the basis increase

in periods of high capital in our model? In such periods there are lower extraction costs

and higher extraction rates, but also greater buildup of inventory, which serves to moderate

consumption and hold up spot prices. In fact, since the level of capital is persistent, investors

expect continued low extraction costs, and high inventory accumulation to support high prices

in the near future, leading to a positive basis.

Finally the bottom right panel shows the risk premium in the model. It has a negative

relationship, as in the data, with both capital and inventory, with an R2 of about 4 percent,

comparable to that in the data. This results because in periods of high capital, extraction costs

are expected to remain low, leading to less volatile future consumption, and hence a lower

risk premium. This is similar to the comparative static result that we found in Section 1.3. In

addition, the risk premium tends to be more volatile after significant depletion of the resource

as future consumption becomes riskier when inventory depletes.

How does the variance of the simulated spot prices at alternative frequencies compare with

that in the data? We look again at Figure 3, where the left and right panels show the frequency

decomposition in the data and the simulated model path. As seen, the model plot shows a

similar U shaped pattern of the decomposition, with the largest variance coming from very

low frequency and very high frequency shocks. Compared to the model though, there is some

greater variance from business cycle frequencies, which arises as the spot price fluctuate with

demand shocks. Still, the demand process essentially has no very low frequency variation,

while the spot prices do. This arises due to the exhaustibility of the resource, which leads

to the upward trend in spot prices, similar to that in the data. Moreover, due to the capital

accumulation process, the price spikes are not perfectly correlated with demand shocks, which

have a strong business cycle component.

3.3 Results from Multiple Simulations

While the results from the single simulation shed light on the observed relations between real

and financial variables, due to exhaustibility, we are limited in the length of the simulation.

In addition, the exact sequence of demand shocks will determine the rate of exhaustion and

23



potentially the statistical significance of our results. In this section, we simulation multiple

times and examine the long run distribution of several statistics.

The results are shown in Figure 6. The top left panel shows the distribution of the time to

reach 90 percent exhaustion of the resource. As can be seen the mean time to exhaustion is

about 90 years although there is considerable variation. The top right panel shows the distri-

bution of the year to maximum consumption. As shown in the single simulation, maximum

consumption typically occurs at the first time there is a sustained increase in demand. Indeed

the histogram of the time of peak consumption has the largest mass in the first two years, but

also a high likelihood of a maximum at about 5 years. There are some paths where the peak

occurs at about 15 to 20 years. However, in all the paths simulated, we obtained consumption

peaks significantly before depletion of even 50 percent of the resource.

The middle right panel looks at the trend of the spot price. As seen, in most paths there

is an upward trend in spot prices. We simulated paths of 125 years, and found that the most

frequently, the maximum spot price occurred in years 120-125. In all these paths, consumption

declined to a very low level after around year 40 to 50. While this may not line up exactly

with historical patters where we have observed high consumption for far longer, it is likely we

can get slower exhaustion by adjusting the parameters of the demand shock and preferences,

which we will do in future versions of the paper.

The middle right panel shows the distribution of the R2 of the regression of the basis on the

capital stock in each sample path. The R2 varies between 0 and 20 percent, with a mean of 5.7

percent. This is lower than the data R2 of about 24 percent (see Table 1), but we must recall

that in our data sample, there has been a sustained period of rapidly accumulating capital in the

2000s, which the model predicts will cool off when demand weakens. The bottom right panel

shows the R2 of the basis on inventory, and as seen, it varies between 0 and 2.5 percent. This

is lower than in the data, which has been seasonally adjusted. We must again find parameters

that get this relationship stronger, as in the data.

Finally, the bottom right panel simulated the R2 of the risk premium on the capital stock

and inventory. Here the R2 average across simulations is about 6.5 percent, which is stronger

than in the data as seen in Table 2. Still, the sign of the coefficients agrees with the data, and
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points out that the same decision variables are important components of the risk premium in

oil futures.

It is finally noteworthy, that the regression results in the model are similar to that in the

data despite our explicit modeling of exhaustibility. While peak consumption is a debatable

hypothesis, it is useful to note that its implications are not at odds with the data. Indeed, our

results suggest that the regression statistics will continue to be significant even if we see rapid

declines in consumption. This arises in our model because greater capital and more frequent

inventory accumulation are required to sustain the same level of consumption.

4 Conclusion

In this paper, we provide a new model of exhaustible resource extraction, inventory accu-

mulation, and accumulation of E&D capital, to address stylized facts on real and financial

variables of the oil industry. The model shows that such evidence is consistent with the peak

consumption view and an increasing trend of real oil prices.

The model shows that even though consumption peaks, and real prices of the resource trend

upwards, the cycles of inventory and capital accumulation are quite stable, as increasingly

costlier resources are extracted. While the resource is not completely exhausted even after

more that a hundred years, consumption drops significantly after about half the resource base is

exhausted, while capital fluctuates with the demand cycle. Therefore, the positive relationship

between E&D capital and the futures basis, and the negative relationship between capital and

the risk premium, are consistent with a model of near exhaustion of the resource, or the peak

consumption view. The model generates a frequency decomposition of the futures basis with

significant non business cycle components and relatedly, an increasing trend in spot prices

similar to that in the data. Overall, our model shows that simulatenously modeling the long

run (E&D) and short run (inventory) decisions of firms, is important in understanding the

relationship between real and financial variables of the oil industry.

Data Appendix

We obtain historical crude oil futures contracts prices from July 1986 to November 2014

from the Chicago Mercantile Exchange (CME). The data series provided summarize the prices
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from all public traded exchanges. We obtain the series of constant maturity Treasury yields

from the Federal Reserve Board, which are required for calculating the weak relative basis.

We filter the series and use only prices for contracts with positive volume. We obtain the core

CPI (to deflate spot oil prices) from the St. Louis Fed.

“Inventory” is denoted as the total US stock of crude oil and petroleum products ex-strategic

oil reserves. We obtain these data from the US Energy Information Administration (EIA).

“Capital Stock’ is the sum of the “Property Plant and Equipment” variable in Compustat of

firms in oil and gas field exploration services (SIC code 1382). Consumption of petroleum

producs is provided by the EIA.

Appendix 1

Proof of Proposition 1.

Using the equilibrium stock price at date 1 in (11), we have that the call option value is

simply

C(x|xe
0, K1) = e−r EQ[

(

a eµ+σ ǫ +
xe
0

x̄
R0

b+ R0

x̄ g(K1)

− x g(K1)

)+

]

=
e−r

D
EQ[

(

a eµ+σǫ − (Dxg(K1)−
xe
0

x̄
R0)

)+

]

=
a e−r

D

[

E[eµ−σM σ+σǫ∗|µ− σM σ + σǫ∗ > log(k)]− k Prob[µ− σM σ + σ ǫ∗ > log(k)]
]

=
a e−r

D

[

e(µ−σMσ+0.5σ2)N(−d1)− kN(−d2)
]

,

as stated. We note that in the third line we use the definition of the ‘risk-neutral shock’ ǫ∗ =

ǫ + σM , while in the fourth line we use the conditional expectation for log normal variables

(see e.g. Proposition 2.29 in Nielsen (1999)). The proof for the put is similar. �

Appendix 2

We proceed by formulating an ‘approximate’ solution to the Hamilton-Jacobi-Bellman

equation in 32 using projection methods (Judd 1999, Chapter 11). The value function is

denoted as J(xe
t , Zt, Kt, ǫt).

STEP 1. Choice of individual basis functions. I choose the Chebyshev polynomials in each of

the 4 dimensions: The Chebysev polynomials on [−1, 1] for the basis for each dimension are
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given by

qm(x) = cos(m cos−1x),

for m = 1, 2, · · · , which satisfy the recursive scheme

qm+1(x) = 2xqm(x)− qm−1(x). (41)

These polynomials are restricted for the interval [a, b] using the transformation

pm, (x) =
qm(

2x−a−b
b−a

)

||qm(
2x−a−b
b−a

)||
.

We solve the value function on bounded spaces in each dimension: [0, x̄] × [0, Z̄] × [0, K̄] ×

[−ǭ, ǭ]. The family {pm(x)}m=1,2,···} are orthonormal polynomials over the chosen intervals.

STEP 2. Choose a basis of ‘complete’ polynomials over the space

The basis of degree M over the 4 dimensions is given by

PM = {p1,i1(X) · p2,i2(Z) · p3,i3(K) · p3,i3(ǫ)|
4
∑

n=1

in ≤ M, 0 ≤ i1, · · · , i3}

We write the generic element of PM as φm(X,Z,K, ǫ), m = 1, 2, · · ·M c, where M c is the

length of the complete polynomial basis. The set of complete polynomials for a 4 dimensional

problem grows polynomially in 4, as opposed to the tensor product basis which would use

every possible product of the degree-M individual basis functions, and hence would grow at

the rate of M4 (see, e.g., pp. 239 in Judd 1999). The complete polynomials asymptotically, as

M becomes large, provide as good an approximation as the tensor product, but with far fewer

elements. . Extending the L2 norm over the 4-dimensional space as the 4-fold integral, it can

be verified that the basis of complete polynomials is orthonormal on the bounded Cartesian

product space.

STEP 3 Let b(n) be the nth guess on the coefficients of the polynomial, i.e J (n)(xe
t , Zt, Kt, ǫt) =

∑Mc

m=1 b
(n) · φm(X,Z,K, ǫ). Then we solve 32 for the n+1th guess as J (n+1)(xe

t , Zt, Kt, ǫt),

using the first order conditions (33) – (37). Note that we are able to take partial derivatives of

the nth guess value function, which is just a polynomial sum. The first order conditions are

solved on a discrete grid of values for inventory, investment, and the extensive margin.
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STEP 4 We now appeal to the Chebyshev Interpolation Theorem (see Judd (1999)) to find an

approximate solution to the Bellman equation. Denote Y = (xe, Z,K, ǫ). The approximation

is made by evaluating the J (n+1)(Y ) at the Chebyshev zeros in the Cartesian space, given

the coefficients b(n). Each interpolation point therefore provides us a linear equation in the

coefficients (bm)
(n+1). With M I interpolation points, we have an overidentified system of

equations in M c unknown coefficients, and we solve for (bm)
(n+1) using linear regression. We

then repeat until convergence.
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Figure 1: Crude Oil Futures Basis and Returns, Oil Inventory and Capital Stocks of Oil Ex-

ploration Firms (1986:7-2014:9)
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The top panel shows the seasonally adjusted weak relative basis on 1-year crude oil futures contracts, which in

month t is [e−r(t)F (t)−S(t)]/S(t), where F (t) is the 1-year futures prices at the beginning of each quarter and

S(t) is the spot price of WTI oil in Cushing, Oklahoma. Seasonal adjustment is done using the X-12 procedure

(used by the US Department of Commerce). The second panel reports the return from month t− 1 to month t of

a 2-months WTI futures contract. The third panel shows the seasonally adjusted “Inventory” of total US stock

of crude oil and petroleum products (in billions of barrels) excluding special purpose reserves at the end of each

month. The bottom panel shows the “Capital Stock”, which is the sum of the “Property Plant and Equipment”
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Figure 2: Consumption of Petroleum Products and Real Spot Price of Crude Oil (1986:7-

2014:6)
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US consumption of petroleum products is reported by the EIA. The spot price is the price of a futures contract

with less than one month to maturity reported at the beginning of the month. The real spot price is the spot price

divided by core CPI (excluding food and energy). 30



Figure 3: Variance Frequency Decomposition of the Price of Oil

We report the variance frequency decomposition (Fourier Transform or spectrum) of the real WTI spot price

from 1986:7 to 2014:9 (left panel) and from simulated spot prices from our infinite horizon model in Section 2

(right panel).
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Figure 4: Comparative Statics of Optimal Firm’s Decisions, Futures Basis, and the Risk Pre-

mium with Respect to the Mean Demand Shock in the 2-Period Model with a Linear Demand

Function

We report the comparative statics of inventory, investment, the weak relative basis, and the risk premium in the

2-period model with respect to alternative levels of the demand shock. The parameters of the model are r = 0.02,

a = 2, b = 1, R = 3, Z0 = 0.5, x̄ = 1, σ = 0.5, γ0 = 0.2, γ1 = 0.2, δ = 0.1, σm = 0.25, u = 0.025. ‘Low’,

‘Medium’, and ‘High’ capital stock levels are K = 0.1, K = 1, and K = 1.5, respectively. The demand shock

is assumed to vary between −0.7 and 0.7 in increments of 0.2.
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Figure 5: Optimal Firm’s Decisions, Futures Basis, and the Risk Premium from a Single

Simulation of Infinite Horizon Model
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We report the simulated time series of the model in Section 2. The parameter choices are in Section 3.1.
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Figure 6: Distribution of Exhaustion Times, Consumption, Spot Prices, and Financial Variable

Regressions from Multiple Simulations.

We report the simulated time series of the model in Section 2. The parameter choices are in Section 3.1.
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